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Bottom Line Up Front (outline)
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Studying UHE (>10 PeV) neutrinos is 
motivated by particle physics and 
astrophysics

The radio technique offers an efficient way 
to achieve necessary effective volumes 
(>100 km3)

The technology is mature, and supported 
by >decade of development and heritage 

We are ready for a large-scale 
experimental effort
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Why Study UHE (>10 PeV) Neutrinos?
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A Diverse Science Case

See also CF7: “Cosmic Probes of Fundamental Physics”

Particle Physics

Astrophysics

arXiv 2203.08096

https://arxiv.org/abs/2203.08096


Particle Physics
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>TeV neutrinos are the highest energy 
leptons ever observed

Unique portals to particle physics at high 
energies
• 𝜈 − 𝑁 cross-section, inelasticity beyond 

accelerators ( 𝑠~30 TeV)
• Flavor oscillations at high-E and long 

baselines (Gpc)
• Fundamental properties: Lorentz 

Invariance, secret/self-interactions, DM 
annihilation (𝜒𝜒 → 𝜈𝜈̅), etc. 104 105 106 107 108 109 1010 1011
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https://arxiv.org/abs/1711.11043


Why Study UHE Neutrinos?
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Origin of UHE cosmic rays – where and how?

Multimessenger astronomy

Neutrinos are unique probes of the distant, 
high-energy universe
• 𝛾-rays absorbed
• CRs deflected; absorbed after ~100 Mpc

𝑝 + 𝛾 → ∆!→ 𝑝 𝑛 + 𝜋" 𝜋!
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Astrophysical Neutrinos

Neutrinos born in (or near) the 
cosmic ray accelerators

Unambiguous proof of 
hadronic acceleration

Detected in 2013!
(Only hints of sources) 
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Cosmogenic Neutrinos
Pions from the GZK interaction further 
decay

Undetected. But! Shape encodes 
important astrophysics:
• Maximum accelerating energy
• Source redshift evolution
• Cosmic ray composition

𝑝 + 𝛾 → 𝑛 + 𝜋!

𝜇! + 𝜈"
𝑒! + 𝜈# + 𝜈̅"

cosmic rays

gamma rays

astro 𝜈

cosmo 𝜈
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Observational challenges
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UHE neutrinos are rare: ≪ 1 /km3/yr

Fluxes too small for optical Cherenkov 
technology that underpins Baikal, 
ANTARES, IceCube, KM3NET, etc.

Need a new approach…



Radio Cherenkov Effect
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“Askaryan” Emission

Suggested by G. Askaryan in 1962

Neutrino-induced particle shower becomes 
net negatively charged

Wavelengths the size of the shower add 
coherently

10cm transverse size →
𝒪(MHz)- 𝒪(1GHz) broadband radio pulse



First Observation in Ice

| Radio Detection Overview | Brian Clark, July 19 2022 12

Observed in ice by the ANITA 
collaboration in 2007 at SLAC End Station 
A (T486 experiment)

Observed a fast, polarized pulse whose 
power scaled with shower energy squared 
(coherent!)

ANITA PRL 99, 171101 (2007)



Polar Ice
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Polar ice has 𝑂 1𝑘𝑚 attenuation lengths at radio frequencies; ideal for a sparse 
detector of adequate size

Barwick et al, JGlac V51 I173, 2005 RNO-G Collab, arXiv 2201.07846

South Pole Summit Station, Greenland
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Two basic strategies to view 
the emission:
• Panoptically, with remote 

observatories
• in-situ, with embedded arrays

Complimentary approaches!
Panoptic observatories have 
larger apertures, but higher 
energy thresholds

Disclaimer: I’m only 
addressing “passive” probes, 
in ice.
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Status Quo
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Series of experiments 
have demonstrated the 
feasibility and scalability of 
the radio technology



ANITA 
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Antarctic Impulsive Transient Antenna

Array of horn antennas suspended from 
NASA Long Duration Balloon (LDB)

Four flights 2006-2016
• Askaryan (neutrino) channel: no excess 

above background
• ~100 UHECR seen

World leading limit above 1019.5 eV

Demonstrates the feasibility of the 
panoptic method

ANITA, PRD 99, 122001  (2019)
arXiv 1902.04005

https://arxiv.org/abs/1902.04005


ARIANNA
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Antarctic Ross Ice-Shelf Neutrino Array

Array of LPDA antennas deployed near ice 
surface at Moore’s Bay in Antarctica

Ran 2011-2020, demonstrated feasibility and 
performance of autonomous, shallow detector
• Cosmic rays ~1/day (calibration beam)

• RF signal direction to ~0.3°

ARIANNA (arxiv 1903.01609)

ARIANNA, JINST 15 (2020) P09039



ARA
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Askaryan Radio Array

Array of 5 stations, 
deployed 2012-2018 (still 
running) at South Pole

Demonstrated feasibility 
and performance of deep 
detector
• Ex: Reco vertex 

direction and distance 
to ~1° and ~30%

calibration 
source

DAQ

HPol
antennas

VPol
antennas

20m 

200m 

ARA, Astropart Phys 2019.01.004 arXiv 1712.03301

ARA, PRD 102 4 043021 (2020), arXiv 1912.00987

https://arxiv.org/abs/1712.03301
https://arxiv.org/abs/1912.00987


ARA Phased Array
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Latest ARA station has threshold-lowering phased 
array trigger – 2x more effective volume at trigger 
level at 10 PeV!

And events can be analyzed

ARA, PRD 105 122006 (2022)
arXiv 2202.07080

ARA, NimA 2019.01.067, arXiv 1809.04573

https://arxiv.org/abs/2202.07080
https://arxiv.org/abs/1809.04573


Bottom Line Up Front

| Radio Detection Overview | Brian Clark, July 19 2022 21

Studying UHE (>10 PeV) neutrinos is 
motivated by particle physics and 
astrophysics

The radio technique offers an efficient way 
to achieve necessary effective volumes 
(>100 km3)

The technology is mature, and supported 
by >decade of development and heritage 

We are ready for a large-scale 
experimental effort



PUEO
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Payload for Ultra High Energy Observations
Successor to ANITA experiment—
array of horns, with phased 
trigger, to fly on an LDB

>10x more sensitive than ANITA

Large instantaneous volume for 
transients, point sources, MMA

Funded through the NASA 
Pioneer Program, flight in ~2024!

JINST 16 (2021) 08, P08035
arXiv 2010.02892

https://arxiv.org/abs/2010.02892


RNO-G
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Radio Neutrino Observatory – Greenland 

Deployment under way in 
Greenland since 2021, goal of 
35 stations

First UHE observatory in the 
northern hemisphere

RNO-G, JINST 16 P03025 (2021)
arXiv 2010.2279

Combines strength 
of deep (ARA, 
RICE) and shallow 
(ARIANNA) 
technology

https://arxiv.org/abs/2010.12279


IceCube-Gen2 Radio
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One element of the IceCube-Gen2 Facility

~200 station over 500 km2, again comibining the deep and 
shallow technology

IceCube-Gen2, J. Phys. G 6 060501 (2021)



Experimental 
Outlook
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Goal is sensitivity 
(90% CL UL) below 
10-9 at 1 EeV



Experimental 
Outlook
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Goal is sensitivity 
(90% CL UL) below 
10-9 at 1 EeV

Future experiments 
chart steady progress 
in opening this 
discovery space



Ongoing Work
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Understanding the ice–
horizontal propagation, 
birefringence

Quantifying and rejecting 
backgrounds– anthropogenic, 
cosmic rays/muons

Algorithmic—triggering, 
reconstruction of energy, 
direction, flavor

Connolly et al, PRD 105 123012 (2022)
Birefringence explains features in ARA data

ARIANNA ICRC 2021
Machine Learning (CNN) trigger

RNO-G, EPJC 82: 147 (2022)
“Forward Folding” energy reconstruction has ~30% 
uncertainty on shower energy

A Small Sampling…
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Conclusions
Studying UHE (>10 PeV) neutrinos is 
motivated by particle physics and 
astrophysics

The radio technique offers an efficient way 
to achieve necessary effective volumes 
(>100 km3)

The technology is mature, and supported 
by >decade of development and heritage 

We are ready for a large-scale 
experimental effort

The presenter thanks 
the NSF through 
Award 1903885. 



Backup
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First Observation
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First observed at SLAC Final Focus 
Test Beam in 2000 on sand

Observed a fast, 100% polarized 
pulse whose power scaled with 
shower energy (coherent!)

PRL 86, 2802 (2001)



RICE
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Radio Ice Cherenkov Experiment

Array of antennas deployed 
opportunistically with AMANDA

Located at the South Pole, ran 
2000-2010

Demonstrated the feasibility of the 
in-situ approach

PRD 85, 062004 (2012)


